A Lyapunov Approach for a PI-Controller with Anti-windup in a Permanent Magnet Synchronous Motor using Chopper Control

نویسنده

  • Paolo Mercorelli
چکیده

This paper deals with a parameter set up of a PIregulator to be applied in a system for permanent magnet threephase synchronous motors to obtain a smooth tracking dynamics even though a chopper control structure is included in the drive. In particular, an anti-windup control structure is considered to avoid saturation and conditions on all controller parameters are found which guarantee stability. High performance application of permanent magnet synchronous motors (PMSM) is increasing. In particular, application in electrical vehicles is very much used. The technique uses a geometric decoupling procedure and a Lyapunov approach to perform a PWM control to be used as a chopper. Chopper control structures are very popular because they are very cheap and easy to be realised. Nevertheless, using a chopper control structure smooth tracking dynamics could be difficult to be obtained without increasing the switching frequency because of the discontinuity of the control signals. No smooth tracking dynamics lead to a not comfortable travel effect for the passengers of an electrical vehicle or, more in general, it could be difficult to generate an efficient motion planning if the tracking dynamics are not smooth. The paper presents a technique to minimise these undesired effects. The presented technique is generally applicable and could be used for other types of electrical motors, as well as for other dynamic systems with nonlinear model structures. Through simulations of a synchronous motor used in automotive applications, this paper verifies the effectiveness of the proposed method and discusses the limits of the results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and Implementation of a High-Precision Position Controller for Permanent Magnet Synchronous Motor Based on a New Gain Scheduling Approach

The direct drive permanent magnet synchronous motor (DD-PMSM) is a suitable choice for high-precision position control applications. Among various control methods of this motor, the vector control approaches especially the field oriented control has a high-performance in the industrial drives. In this method, the components of stator current are controlled independently and as a result, the tor...

متن کامل

Speed Control of Permanent Magnet Synchronous Motor by Antiwindup PI Controller and Comparison with Fuzzy Controller

In this paper, the driver with antiwindup and fuzzy high-performance and robust PI controller has been suggested for Permanent Magnet Synchronous Motor (PMSM). This controller is suggested for the design of the robust driver for three phase PMSM and the cost reduction of its control system. It’s useful for the industrial application and automation and ultimately speed control and the improvemen...

متن کامل

Speed Control of Permanent Magnet Synchronous Motor by Antiwindup PI Controller and Comparison with Fuzzy Controller

In this paper, the driver with antiwindup and fuzzy high-performance and robust PI controller has been suggested for Permanent Magnet Synchronous Motor (PMSM). This controller is suggested for the design of the robust driver for three phase PMSM and the cost reduction of its control system. It’s useful for the industrial application and automation and ultimately speed control and the improvemen...

متن کامل

A Thorough Comparative Analysis of PI and Sliding Mode Controllers in Permanent Magnet Synchronous Motor Drive Based on Optimization Algorithms

In this paper, the speed tracking for permanent magnet synchronous motor (PMSM) in field oriented control (FOC) method is investigated using linear proportional-integral (PI) controller, sliding mode controller (SMC) and its advanced counterparts. The advanced SMCs considered in this paper are fuzzy SMC (FSMC) and sliding mode controller with time-varying switching gain (SMC+TG) which can effec...

متن کامل

Tuning of Extended Kalman Filter using Self-adaptive Differential Evolution Algorithm for Sensorless Permanent Magnet Synchronous Motor Drive

In this paper, a novel method based on a combination of Extended Kalman Filter (EKF) with Self-adaptive Differential Evolution (SaDE) algorithm to estimate rotor position, speed and machine states for a Permanent Magnet Synchronous Motor (PMSM) is proposed. In the proposed method, as a first step SaDE algorithm is used to tune the noise covariance matrices of state noise and measurement noise i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014